Existence of Nontrivial Solutions for Sixth-Order Differential Equations

نویسندگان

چکیده

We show the existence of at least one nontrivial solution for a nonlinear sixth-order ordinary differential equation is investigated. Our approach based on critical point theory.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and nonexistence of nontrivial solutions of semilinear sixth-order ordinary differential equations

K e y w o r d s E x t e n d e d Fisher-Kolmogorov equation, Sixth-order equations, Eigenvalue problems~ Clark's theorem, Variational methods. 1. I N T R O D U C T I O N Bistable systems play an important role in the study of spatial patterns. Recently, interest has turned to higher-order model equations involving bistable dynamics, such as the extended Fisher-Kolmogorov (EFK) equation Ou 0% 02u...

متن کامل

Existence of triple positive solutions for boundary value problem of nonlinear fractional differential equations

This article is devoted to the study of existence and multiplicity of positive solutions to a class of nonlinear fractional order multi-point boundary value problems of the type−Dq0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1,u(0) = 0, u(1) =m−2∑ i=1δiu(ηi),where Dq0+ represents standard Riemann-Liouville fractional derivative, δi, ηi ∈ (0, 1) withm−2∑i=1δiηi q−1 < 1, and f : [0, 1] × [0, ∞) → [0, ...

متن کامل

Existence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations

In this paper, we consider a coupled system of nonlinear fractional differential equations (FDEs), such that both equations have a particular perturbed terms. Using emph{Leray-Schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.

متن کامل

Existence of Nontrivial Solutions of Linear Functional Equations

In this paper we study functional equation n ∑ i=1 aif(bix+ cih) = 0 (x, h ∈ C) where ai, bi, ci are fixed complex numbers and f : C → C is the unknown function. We show, that if there is an i such that bi/ci ̸= bj/cj holds for any 1 ≤ j ≤ n, j ̸= i, the functional equation has a noncontant solution if and only if there are field automorphisms φ1, . . . , φk of C such that φ1 · . . . · φk is a so...

متن کامل

Existence of Solutions for Iterative Differential Equations

The presence of self-mapping increases the difficulty in proving the existence of solutions for general iterative differential equation. In this article we provide conditions for the existence of solutions for the initial value problem, in which the conditions are natural and easily verifiable. We generalize the relevant results and point out the mistake in some references.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2021

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math9161852